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Large-Format Additive Manufacturing

• Large-Format AM (LFAM) is advantageous 

for tooling applications1

• Big Area Additive Manufacturing (BAAM) and 

other LFAM type systems can create large 

complex parts

• Fiber Reinforced Polymers (FRP) feedstock 

increases part stiffness and lowers coefficient 

of thermal expansion (CTE)2

• AM tools may still experience warpage at 

autoclave conditions

What leads to this warpage?

Tool warping due to 

anisotropic expansion

1. Duty et al., 2015, DOI: 10.2172/1209207

2. Love et al., 2014, DOI:10.1557/jmr.2014.212 3



Longitudinal

Better resists 

expansion!

Transverse

Fiber Alignment

Fiber Reinforced Polymer Composites = MATRIX + FIBER

• During the extrusion, fibers are aligned by nozzle shear in the print direction1

• This results in highly aligned bead edge with a randomly oriented center by comparison2

• After extrusion, the fiber aligned bead has a highly anisotropic microstructure

• Anisotropic beads lead to a highly anisotropic mesostructure
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1. Hassen et al., 2022, DOI: 10.1002/pc.26645

2. Colón Quintana et al., 2022, DOI: 10.3390/ma15082764

FIBER



Anisotropy from Fiber Alignment

• HIGHLY anisotropic thermomechanical properties in the x, y, and z-direction 

• Fibers resist expansion much more in the longitudinal than transverse direction

• Alignment causes different tiers of CTE in based on amount of alignment

o Ex: less fiber alignment at center, lower x-dir CTE than at highly aligned edge

• Thermomechanical Analysis (TMA) does not accurately capture CTE of the complex 

microstructure due to size limitations as shown by previous work1,2

Where, 𝐂𝐓𝐄𝐀 ≠ 𝐂𝐓𝐄𝐁 ≠ 𝐂𝐓𝐄𝐂x-direction Bead Width = 15 mm
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1. Corum et al., 2022, DOI: 10.26153/tsw/44338

2. Hoskins et al., 2019, DOI: 10.26153/tsw/17350
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Traditional CTE Measurement

Thermomechanical Analysis (TMA)

• Traditionally used for CTE measurements

• TMA measures a small specimen (max size 

of 10 x 10 x 10 mm)1

• Assume sample represents entire part

• Correct assumptions for homogenous 

material → incorrect for anisotropic material

TMA measures a small specimen

➢ Individual BAAM bead is typically wider than 

maximum TMA dimensions

Assume sample represents entire part

➢ Different behavior at bead interfaces, center of 

the bead, across beads, and between layers
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1. Furnace

2. LVDT Probe

3. TMA Sample

4. Temperature Probe

5. Sample Stage

1. ASTM E831, DOI: 10.1520/E0831-19



Because of the anisotropic behavior 

of FRP made LFAM structures, we 

need a better way to measure them
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DIC Oven Overview
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Major Components of the DIC Oven2D Digital Image Correlation Camera Placement

Digital Image Correlation 

(DIC) tracks the location of 

speckles from a reference to 

deformed state to create 

displacement vectors

DIC Oven 

camera 

placement greatly 

reduces chances 

of capturing false 

strain 

Typical 2D DIC camera 

placement can record 

expansion towards 

camera as false strain



Procedure Overview

• Set sample

• Room temperature images

• Allow the sample to reach steady 

state temperature & image

• Upload images to Vic-2D

• Enter data in equation below to 

find CTE

Room Temperature Steady State 

Temperature

𝜀 = strain

T = temperature

SS = steady state temperature

RT = room temperature

CTE = 
𝜀𝑆𝑆 − 𝜀𝑅𝑇

𝑇𝑆𝑆 − 𝑇𝑅𝑇

Thermal Load

DIC Speckled 

Sample

DIC Oven Procedure
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Objectives

• Relate fiber orientation to thermomechanical properties 
using optical methods and the DIC Oven

• Develop CTE model incorporating degree of fiber 
alignment to thermal expansion & validate with DIC Oven
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Materials for Study

• 20% CF-ABS material printed using BAAM

• Microcopy samples machined to show XY 

and YZ planes for LFAM beads

• DIC cube (50 x 50 x 50 mm) machined to 

have flat, parallel faces and speckled
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DIC sample speckled for 

2D-DIC



Microscopy

• CF-ABS samples potted in Buhler EpoxiCure2 epoxy using a 1.25” puck

• Polished using an Allied High Tech MetPrep 3

• Imaged using Keyence VK-X3000 microscope
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Microscopy
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Single LFAM bead shown here



Microscopy

Single LFAM bead shown here
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Highly Aligned Fibers

Z

Y

1000 μm

Random Orientation

1000 μm



Microscopy
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Bead interface between 

LFAM beads shown

Z

Y



Microscopy

16

Bead interface between 

LFAM beads shown

Highly Aligned at Bead 

Interface

Section 

View Plane

Section 

View Plane

Z

Y

1000 μm



Microscopy

XY bead view shown here
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XY bead view shown here

Notice how 

alignment decreases 

away from bead 

edge

Due to nozzle shear

Microscopy
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1000 μm



Strain Map, XY Plane

• Created using Vic-2D

• Homogenous spread of 

relatively low strain in 

the x-dir

• Notice red & blue bands 

of strain in the y-dir

• Red is high strain at 

bead edges

• Blue is lower strain at 

the more randomly 

oriented bead center

19

Y

X

BEAD

BEAD

Effects of fiber alignment 

influencing strain

Scallops from print 

direction

Print Direction

Print Direction



Strain Map, XY Plane

• Created using Vic-2D

• Homogenous spread of 

relatively low strain in 

the x-dir

• Notice red & blue bands 

of strain in the y-dir

• Red is high strain at 

bead edges

• Blue is lower strain at 

the more randomly 

oriented bead center
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Strain Map, XZ Plane
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Z

X

• Created using Vic-2D

• Homogenous spread of 

low strain in x-dir

• Bands again in the y-dir

• High strain from 

aligned fibers at layer 

interfaces (red)

• Recall fibers provide 

much less resistance 

in transverse direction

• Lower strain from 

random orientation 

(orange-yellow)



Strain Plotted
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• The following maps 

the average strain (~2 

beads shown here)

• Peaks correspond to 

highly fiber aligned 

bead edges

• Valleys are randomly 

oriented center

• Clearly not symmetric, 

but repetitive



Strain Plotted

• The following maps 

the average strain (~2 

beads shown here)

• Peaks correspond to 

highly fiber aligned 

bead edges

• Valleys are randomly 

oriented center

• Clearly not symmetric, 

but repetitive
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CTE Values – DIC Oven
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• CTE values measured using the DIC Oven

• X-dir CTE is lowest from fiber aligned in 

this direction

• Y-dir CTE is higher due to fiber aligned at 

bead edges & random orientation in center

• Z-dir CTE is highest from fiber aligned 

along layer edges that provide little 

resistance to transvers direction expansion



Abaqus Simulation

• Modeled LFAM bead to allow multiple CTE inputs from TMA values

• Complex microstructure represented in the mesostructure of the LFAM bead

• LFAM structure (4x8 beads) created from beads to deform as a single part
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3. CB
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• Use multiple TMA measurements to better capture anisotropic microstructure

• The DIC cube was cut using a diamond saw to test 5 total TMA samples 

• Model used TMA values as inputs for different “materials” representative of 

TMA sample location

TMA Inputs
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Here: LBI = left bead 

interface, LC = left of bead 

center, CB = center of 

bead, RC = right of bead 

center, & RBI = right bead 

interface



CTE Values - TMA
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• Over CTE trend of x < y < z

• Differing CTE based on 

location → fiber orientation

• Suspect LCI ≠ RBI was function 

of shearing from print path

• Values used as CTE inputs for 

Abaqus model

LCLBI RC RBICB



Not entirely symmetric 

across single bead

CTE Values - TMA
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• Over CTE trend of x < y < z

• Differing CTE based on 

location → fiber orientation

• Suspect LCI ≠ RBI was function 

of shearing from print path

• Values used as CTE inputs for 

Abaqus model

LCLBI RC RBICB



Abaqus Simulation

• Modeled vs. measured CTE shown 

• Modeled CTE is similar to 

measured

• The z-dir CTE modeled in Abaqus 

was lower than measured by DIC 

Oven

• TMA inputs struggle to capture 

deformation between layers

• TMA is a local measurement where 

DIC Oven is global
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Abaqus Simulation
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0 mm

• Z-dir strain shown at 

different z-depths

• Changes as depth 

changes

• Machining depth is 

important when 

imaging samples



Abaqus Simulation
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-3 mm

• Z-dir strain shown at 

different z-depths

• Changes as depth 

changes

• Machining depth is 

important when 

imaging samples
Notice changing plane as depth 

changes → different fiber orientation



Abaqus Simulation
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-6 mm

• Z-dir strain shown at 

different z-depths

• Changes as depth 

changes

• Machining depth is 

important when 

imaging samples
Notice changing plane as depth 

changes → different fiber orientation



Abaqus Simulation

33

-9 mm

• Z-dir strain shown at 

different z-depths

• Changes as depth 

changes

• Machining depth is 

important when 

imaging samples
Notice changing plane as depth 

changes → different fiber orientation



Abaqus Simulation

• Z-dir strain shown at 

different z-depths

• Changes as depth 

changes

• Machining depth is 

important when 

imaging samples

34

Notice changing plane as depth 

changes → different fiber orientation

-12 mm



Conclusions
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• Fiber orientation directly impacts 
thermomechanical properties of LFAM 
structures

• Effects can be visualized using microscopy 
and measured DIC Oven

• More aligned fiber at bead edges results in 
region with higher CTE

• More randomly oriented center results in lower 
CTE regions

• Modeling can predict CTE of LFAM structures 
when inputs capture complex microstructure

• Machining is important as to not skew results

5 mm

Microscopy 

image of 

aligned bead 

interface 

(left) & strain 

map from 

aligned fiber 

(below)Z

Y

Y

X



Future Work
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Removing ~1mm of material from z-dir with each step

1 2 3 4 5

• X-ray CT scanning to obtain fiber 

orientation for a bead profile (right)

• Serial sectioning of CF-ABS sample to 

verify model results using DIC Oven 

method (below)

XCT scans to 

map fiber for a 

single bead
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Thank you for your time!

Any Questions?
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Contact: tcorum2@vols.utk.edu
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